

University of Chemistry and Technology, Prague

Independent packaging laboratory of UCT Prague

Testing laboratory No. 1316 accredited by Czech Accreditation Institute according to ČSN EN ISO/IEC 17025

UCT Prague, Department of Food Preservation, Technická 5, 166 28 Prague 6, Czech Republic homepage: nol.vscht.cz

> Pages: 5 Page: 1

TESTING PROTOCOL

042-en/18

Customer:

FARUSA emballage a/s

Bygmarken 14, DK-3520 Farum

Denmark

VAT DK27425518

Product:

The sample of the plastic box. Material: HDPE,

dimensions 54 cm \times 34 cm \times 13 cm.

Sample labelling in the laboratory: 042/18/1.

Producer:

See customer.

Objective:

See testing methods (page 2).

Processed by: Lenka Votavová, MSc, PhD

Appendix:

Appendix no.1 – Certificate of Analysis PR1841255, ALS Czech Republic,

s.r.o., Na Harfe 336/9, 190 00 Prague 9, Czech Republic.

Prague, May 21, 2018

Assoc. Prof. Jaroslav Dobiáš, MSc, PhD

IPL manager

The results in this protocol apply for the testing samples only. Without the IPL authorization, this protocol may not be reproduced unless in whole.

ATL - IPL	Testing protocol No.: 042-en/18	Page: 2/5

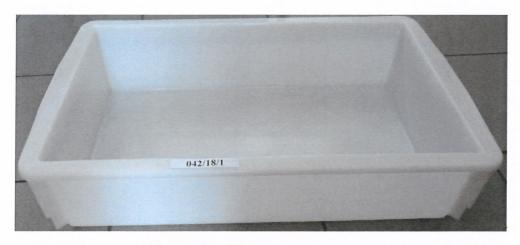
1. Basic information

	Samples	collected b	y	Customer		
Sample collection	Date of the collectio		n	None		
Sample concetion	Date of the transfer (to	April 18, 2018		
	ZM-01	terials int EN 1186;	Determination of overall migration from packaging materials into evaporable food simulants (gravimetry, ČSN EN 1186; U.S. FDA, Code of Federal Regulations 21, chapter 175.300, p. d), e)).			
Used testing methods IPL	ZM-16	Determination of migration of aromatic amines from products in contact with food into food simulants (spectrometry, §35 LMBG, L.00.00-6).				
	ZM-42 ^{N)}	Determination of overall migration from plastics into vegetable oil (gravimetry, gas chromatography, ČSN EN 1186-10).				
Sub-supplier	Name, ad	ldress	Czech Republic, s.r.o., Na Harfě 336/9, 90 00 Prague 9, Czech Republic			
of the accredited tests	Tosts realized		Dete	Determination of heavy metals leachable into % acetic acid ^{S)} .		
Date of testing	April 24 – May 14, 2018					
Used devices	 analytical balance AND HR-200-EC (A&D Instruments LTD) spectrophotometer PE Lambda 25 (Perkin-Elmer) 			`		

S) Made by sub-supplier

2. Procedure of preparation of the samples for testing

4 pieces of plastic box were obtained. The tested boxes were cut into pieces of suitable size (5 cm × 5 cm). The migration tests were performed according to the European Parliament and Council Regulation (EC) No. 1935/2004 and the Commission Regulation (EU) No. 10/2011.


The test conditions of overall and specific migrations were as follows: the real use conditions – full immersion with surface area of 1 dm² into 100 ml of food simulant; the food simulants – simulant A (10% ethanol), simulant B (3% acetic acid), simulant D2 (vegetable oil); contact temperature – 20°C, 40°C (overall migration) and 60°C (specific migration); contact time – 48 hr, 240 hr (10 days). To prepare the heavy metal extracts into 3% acetic acid the same contact conditions as for the spe-

N) Non accredited testing method.

cific migration tests were used.

The results of migration parameters were expressed according to the Commission Regulation (EU) No. 10/2011 (Chapter V, Article 17, paragraph 1 and 2) in milligrams per square decimetre of the sample surface for overall migration and in milligrams per kilogram of food simulant applying a surface to volume ratio of 6 dm² per kg of food for specific migration.

The results of heavy metals migration obtained from the sub-suppliers expressed in milligrams per litre of food simulant were recalculated to milligrams per kilogram of food simulant assuming the contact conditions as given above.

Figure 1 – Tested sample.

3. Results

Tested	Conditions	11m:4	Sample	Sample Measure- ment uncer- Li		:4**)
parameter	Conditions	Conditions Unit 0	042/18/1	tainty*)	Limit**)	Evaluation
Overall	3% acetic acid/ 240 hr/40°C		< 0.5			
migration (ZM-01)	10% ethanol/ 240 hr/40°C	mg/dm²	< 0.5	_	10	Within limit
Overall migration (ZM-42) ^{N)}	Vegetable oil/ 240 hr/40°C		2.4	± 1.0		
Aromatic amines migration (ZM-16)	3% acetic acid/ 240 hr/60°C	mg/kg ⁺⁾	< 0.003	_	0.01	

Notes:

Symbol ,, < "means less than the limit of detection of the method used.

⁺⁾ Results of migrations are expressed as the mg/kg of food simulant, applying a surface to volume ratio of 6 dm² per kg of food.

Annnotations:

*) Stated uncertainty is expressed as expanded combined uncertainty based on standard deviation multiplied by coverage factor

(k = 2), defines an interval having a level of confidence of approximately 95 %.

***) Limit according to Commission Regulation (EC) No 10/2011 as amended, Annex I; the required limits are not given to express migration parameters in mg/article.

N) Non accredited testing method.

Tested parameter			Sample	Measurement	**	
		Unit	042/18/1	uncertainty	Limit**)	Evaluation
	Al		0.028		1.0***)	
	Ba		0.0103		1.0	
	Ca	mg/kg ⁺⁾	0.575	*)	_	
Migration of heavy metals from polymer material into 3% acetic acid ^{S)} (240 hr/60°C)	Со		< 0.0012		0.05	
	Cu		0.0015		5.0	Within
	Fe		0.0146		48	limit
	Li		< 0.00060		0.6	
	Mn		< 0.00030		0.6	
	Ni		< 0.0012		0.02****)	
	Zn		0.0056		25	

Symbol ,, < "means less than the limit of detection of the method used. (See the testing protocol in appendix no. 1).

+) Results of migrations are expressed as the mg/kg of food simulant, applying a surface to volume ratio of 6 dm² per kg of food. **Annnotations:**

*) See the testing protocol in appendix no. 1.

***) Limit according to the Commission Regulation (EC) no. 10/2011 as amended. Annex II.
***) The limit for aluminium will be obligatory from September 14, 2018.

****) The limit for nickel will be obligatory from May 19, 2019.

s) Determined on the base of the results of the sub-supplier.

ATL - IPL	Testing protocol No.: 042-en/18	Page: 5/5
-----------	---------------------------------	-----------

4. Deviations from recorded testing procedures. additional informationNone

5. Conclusions

The migration tests were performed according to Regulation (EC) No. 1935/2004 of the European Parliament and of the Council and Commission Regulation (EU) No. 10/2011. The resulting values are within the required limits.

University of Chemistry and Technology, Prague Independent packaging laboratory of UCT Prague

UCT Prague, Department of Food Preservation, Technická 5, 166 28 Prague 6, Czech Republic homepage: nol.vscht.cz

Pages: 3

Page: 1

APPENDIX OF TESTING PROTOCOL

Testing	protocol	no.:	042-en/	18
			-	

Appendix no.: 1

Appendix

Testing protocol no. PR1841256, ALS Czech Republic, s.r.o.,

content:

Na Harfě 336/9, 190 00 Prague 9, Czech Republic.

Processed by: Lenka Votavová, MSc, PhD

NEZÁVISLÁ OBALOVÁ LABORATOŘ (NOL) VŠCHT Praha Technická 3, 166 28 Praha 6

Prague, May 21, 2018

Assoc. Prof. Jaroslav Dobiáš, MSc, PhD

IPL manager

The results in this appendix of testing protocol apply for the testing samples only. Without the IPL authorization, this appendix may not be reproduced unless in whole.

Appendix no.: 1

IPL

CERTIFICATE OF ANALYSIS

Work Order	: PR1841256	Issue Date	: 10-May-2018
Customer	Vysoka skola	Laboratory	: ALS Czech Republic, s.r.o.
Contact	chemicko-technologicka v Praze : JAROSLAV DOBIAS	Contact	: Client Service
Address	Ustav konzervace potravin a technologie masa Technicka 3 166 28 Praha 6 Ceska republika	Address	: Na Harfe 336/9 Prague 9 - Vysocany 190 00 Czech Republic
E-mail	: jaroslav.dobias@vscht.cz	E-mail	: customer.support@alsglobal.com
Telephone	:	Telephone	: +420 226 226 228
Facsimile	:	Facsimile	: +420 284 081 635
Project	: Smlouva č. 002/752/04	Page	: 1 of 2
Order number	:	Date Samples Received	: 04-May-2018
C-O-C number	:	Quote number	
Site		Date of test	: 08-May-2018 - 10-May-2018
Sampled by	: zakaznik	QC Level	: ALS CR Standard Quality Control Schedule

General Comments

This report shall not be reproduced except in full, without prior written approval from the laboratory. The laboratory declares that the test results relate only to the listed samples.

Responsible for accuracy

Signatories Zdeněk Jirák

Environmental Business Unit Manager

Testing Laboratory No. 1163 Accredited by CAI according to CSN EN ISO/IEC 17025:2005

Issue Date

: 10-May-2018

Page

: 2 of 2

Work Order

PR1841256

Customer

Vysoka skola chemicko-technologicka v Praze

Analytical Results

	Laborator	y sample ID	into 3% acet PR1841256	ic acid 6-001				
Method	LOR	Unit	Result	ми	Result	MU	Result	MU
W-METAXFX1	0.010	mg/L	0.047	± 10.0%				****
W-METAXFX1	0.00050	mg/L	0.0172	± 10 0%		1.000		. Comm
W-METAXFX1	0.0050	mg/L	0.958	± 10.0%			••••	
W-METAXFX1	0.0020	mg/L	<0.0020				***	
W-METAXFX1	0.0010	mg/L	0.0025	± 10 0%	****	****		1000
W-METAXFX1	0.0020	mg/L	0.0243	± 10 0%	••••	***		
W-METAXFX1	0.0010	mg/L	<0.0010		••••			
W-METAXFX1	0.00050	mg/L	<0.00050		••••			
W-METAXFX1	0.0020	mg/L	<0.0020					****
W-METAXFX1	0.0020	mg/L	0.0093	± 10.0%				
	Method W-METAXFX1	Laborator	W-METAXFX1 0.010 mg/L W-METAXFX1 0.00050 mg/L W-METAXFX1 0.0050 mg/L W-METAXFX1 0.0020 mg/L W-METAXFX1 0.0010 mg/L W-METAXFX1 0.0020 mg/L W-METAXFX1 0.0010 mg/L W-METAXFX1 0.0010 mg/L W-METAXFX1 0.00050 mg/L W-METAXFX1 0.0020 mg/L	Into 3% acet	Into 3% acetic acid PR1841256-001 O3-May-2018 08:00 O3-May	Laboratory sample ID Cflient sampling date / time 03-May-2018 08:00	Into 3% acetic acid PR1841256-001 Client sampling date / time 03-May-2018 08:00 Client sampling date / time MU Result MU MU MU MU MU MU MU M	Into 3% acetic acid PR1841256-001

If no sampling time is provided, the sampling time will default 00.00 on the date of sampling. If no sampling date is provided, delivery date in brackets without a time component will be displayed instead. Measurement uncertainty is expressed as expanded measurement uncertainty with coverage factor k = 2, representing 95% confidence level.

Key: LOR = Limit of reporting; MU = Measurement Uncertainty

The end of result part of the certificate of analysis

Brief Method Summaries

Analytical Methods	Method Descriptions
Location of test performance	e: Na Harfe 336/9 Prague 9 - Vysocany Czech Republic 190 00
W-METAXFX1	CZ_SOP_D06_02_001 (US EPA 200.7, ISO 11885, CSN EN 16192, US EPA 6010, SM 3120, CSN 75 7358 samples prepared
	as per CZ_SOP_D06_02_J02 chap. 10.1 and 10.2) Determination of elements by atomic emission spectrometry with
	inductively coupled plasma and stoichiometric calculations of compounds concentration from measured values including the
	calculation of total mineralization and calculating the sum of Ca+Mg. Sample was fixed by nitric acid addition prior to analysis.

A '*' symbol preceding any method indicates laboratory or subcontractor non-accredited test. In the case when a procedure belonging to an accredited method was used for non-accredited matrix, would apply that the reported results are non-accredited. Please refer to General Comment section on front page for information. If the report contains subcontracted analysis, those are made in a subcontracted laboratory outside the laboratories ALS Czech Republic, s.r.o.

The calculation methods of summation parameters are available on request in the client service.